

Parallels RAS 導入ガイド

Ver 1.0 (Based on v19.1.23476)

目次

1. は	: じめに	3
本ド	キュメントの目的	3
制限	事項	3
2. Pa	arallels RAS アーキテクチャ	4
コン	ポーネント	4
シス	テムとソフトウェア要件	5
Para	llels RAS コンポーネント要件	5
Para	ıllels Client 要件	6
Para	llels RAS 基本コンセプト	7
Para	llels Client コネクションフロー	9
3. 構	成案	11
1.	シングルサーバーによる、最小構成での自席 PC の利用	11
2.	自席 PC と、バックオフィス向け RDS とのハイブリッド構成	12
3.	「構成案 2」における、200 同時接続時の構成例	13
4.	物理 PC をなくし、VDI 環境へ完全移行	14
5.	検証環境の構成案(AWS Cloud を利用した場合)	15
6.	AWS Cloud を利用した構成案(700 同時接続を想定)	16
7	クラウドとのハイブリッド構成で、運用コストや事業継続性を向上	17

1. はじめに

本ドキュメントの目的

本ドキュメントは、Parallels RAS を利用して、シンプルな 1 サーバー構成から複雑なハイブリッド構成、またクラウドを利用した構成まで含め、様々な構成案をまとめたガイドとなります。

制限事項

本ドキュメントの内容は、Microsoft Azure 上の仮想サーバーを利用し、Parallels RAS は「RAS Version 19.1.23476」を利用しています。

また、RAS のコンポーネントが動作するサーバーと RDS サーバーは、「Windows Server 2022 Datacenter: Azure Edition - x64 Gen2」を利用し、Remote PC は「Windows 11 Pro, version 22H2 - x64 Gen2」を利用しております。その他の環境やバージョンでは、手順通りに進まない場合があることを、予めご承知ください。

2. Parallels RAS アーキテクチャ

コンポーネント

アイコン	コンポーネント名	用途
:::	Connection Broker(CB)	RAS のコアコンポーネントです。各種ファームの追加と管理、アプリケーションやデスクトップの公開設定、ロードバランス、ユーザーやセッション、ポリシーの管理など、コアサービスと管理機能を提供します。
1	Secure Gateway(SG)	アプリケーションで必要とされるすべてのトラフィックを単一のポートでトンネリングして、セキュアな接続を実現します。
→O,→O	High Availability Load Balancing(HALB)	ユーザーと Secure Gateway の間に配置される高可用性ソフトウェアロードバランサーで、 Secure Gateway に対し、負荷分散を提供するアプライアンスです。
RDSH	Remote Desktop Session Host Agent(RDSH)	Windows Server のサーバーロールです。ユーザーは仮想デスクトップおよびセッションベースのデスクトップとアプリケーションを公開します。
PC	Remote PC(RPC)	RAS リモート PC エージェントがインストールされた、物理または仮想のリモート Windows コンピューターです。
VDI	VDI Provider(VDI)	仮想デスクトップインフラストラクチャ(仮想マシンを実行するハイパーバイザーを備えた VDI ホスト)。 各仮想マシンには、RAS ゲストエージェントがインストールされている必要 があります。

その他の Parallels RAS コンポーネント

VDI Guest Agent: 仮想ゲスト OS へのリモートアクセスを有効にします。 RAS VDI Host Agent と連携して動作します。エージェントは手動でインストールできますが、 Parallels RAS コンソールからプッシュインストールすることも可能です。

Reporting Service: Parallels RAS レポートを実行および表示するのに使用するオプションのコンポーネントです。定義済みのレポートにはユーザーおよびグループのアクティビティ、デバイス情報、セッション情報、アプリケーション使用率が含まれます。独自の基準を使用してカスタムレポートを作成することもできます。 MS SQL が必要です。

Performance Monitor: Parallels RAS Performance Monitor はブラウザーベースのダッシュボードで、管理者が Parallels RAS の展開のボトルネックやリソース使用率の分析に使用できるようになっています。このダッシュボードではパフォーマンスメトリクスを視覚的に表示でき、Parallels RAS Console またはウェブブラウザーに表示することができます。

システムとソフトウェア要件

Parallels RAS コンポーネント要件

アイコン	コンポーネント名	CPU	Memory	最大同時処理数 (目安)	サポートOS	用途
:::	Connection Broker(CB)	2 core	4 GB	5000CCU/3台構成時	Windows Server 2012R2~ 2022(64ビットのみ)	公開済みのアプリケーションおよびデスクトップのロードバランスが実行されます。 複数のRASを追加することで、Active/Activeとして冗長化することが可能です。
	Secure Gateway(SG)	2 core	4 GB			アプリケーションで必要とされるすべてのトラフィックを単一のポートでトンネリングして、セキュアな接続を実現します。
	Remote Desktop Session Host Agent(RDSH)	要件に依存		40~50CCU程度		Windows Server のサーバーロールです。ユーザーは仮想デスクトップおよびセッションベースのデスクトップとアプリケーションを公開できます。
-0<00	High Availability Load Balancing (HALB)	1 core	2 GB	2000		ユーザーと Secure Client Gateway の間に配置されるソフトウェアロードバランサーです。 HALB アプライアンスを2台以上で運用することで、Active/Standbyとして機能します。
PC	Remote PC(RPC)	N/A		(2.24)2.3	Windows Server 2008R2~ 2022 Windows 7~11	RASリモートPCエージェントがインストールされたリモートWindowsコンピューター。
VDI	VDI Provider(VDI)	N/A		N/A	windows Server 2008R2~	仮想デスクトップインフラストラクチャ(仮想マシンを実行するハイパーバイザーを備えたVDIホスト)。 各仮想マシンには、RASゲストエージェントがインストールされている必要があります。

※CCU = Concurrent Users(同時接続数)

- ※CB、SG、RDS は 1 台の Windows Server ヘインストールし、シングルサーバー構成で運用することが可能です。ただし RDS を含めて運用する場合は、1 台あたり 30CCU 程度を上限とすることを推奨いたします。
- ※Parallels RAS の運用において、Active Directory(AD)は必須ではございません。
- ※CPU/Memory のリソースはあくまでもコンポーネントが稼働する最低要件となります。OS 稼働分は 考慮しておりません。
- ※目安として、250CCUを超える場合は、CBとSGのサーバーは分けることを推奨いたします。

Parallels Client 要件

Parallels Client を用いて、各種クライアント端末より、公開設定されたアプリケーションやデスクトップへアクセスすることが可能です。以下は対応クライアント端末となります。

- Windows 7, 8.x, 10, 11
- Windows Server 2008 R2 から Windows Server 2022 まで
- macOS 10.13 High Sierra から macOS 12 Monterey まで。Parallels Client は、Intel または Apple M1、いずれのチップを搭載する Mac コンピューター上でもネイティブに動作します。
- iOS 13.x、14、15、iPadOS 13.x および 14、15。
- Android 7 から 12 まで
- Chrome OS

Parallels Client for Linux は、次の Linux ディストリビューション (x64 版のみ) をサポートしています。

- Ubuntu 18.04 LTS, 20.04 LTS
- Debian 10 (Buster), Debian 11 (Bullseye)
- Fedora 34、35
- CentOS 7, 8
- Linux Mint 19, 20
- ThinOS/Dell Wyse Thin Clients。ThinOS 9 以降には対応していません。
- HTML5 対応ブラウザー

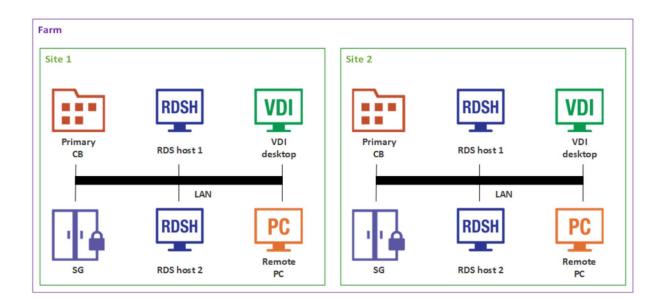
Microsoft Edge、Mozilla Firefox、Google Chrome、Safari など

サポートするブラウザーは次の通りです。

Parallels RAS 管理ポータル、HTML5 クライアント、およびウェブ認証は、Microsoft Edge (Chromium ベース)、Google Chrome、Mozilla Firefox、Safari などの HTML5 をサポートする最新のウェブブラウザーで実行することができます。

※Parallels Remote Application Server 19 のリリースに伴い、Internet Explorer は Parallels RAS Management Portal、HTML5 Client、および Web 認証コンポーネントにアクセスするためのサポートが終了しています。

Parallels RAS 基本コンセプト


ユーザーが Parallels Client から Parallels RAS に接続すると、利用可能な公開されたリソース(アプリケーション、デスクトップ、ドキュメントなど)が表示されます。ユーザーはリソースを選択して起動します。 システムはユーザー要求を自動的に負荷分散し、最も負荷の少ないホストからリソースを起動します。その後、ユーザーには RDP プロトコルを介してシームレスにリソースが表示されます。

Parallels RAS ビルディングブロックは次のとおりです(詳細な説明については、前のセクションを参照してください)。

- - ファームは、一意のデータベースとライセンスを持つ論理エンティティとして維持される Parallels RAS コンポーネントのコレクションです。
- Site(サイト)
 サイトは通常、物理的な場所に基づく管理エンティティです。 各サイトは、少なくとも
 Connection Broker、Secure Gateway、および RD セッションホスト、仮想化サーバー、
 および Windows PC にインストールされているエージェントで構成されています。特定
 のファームに複数のサイトが存在する可能性があります。
- Agents(エージェント)
 各リソースにインストールするコンポーネントです。Connection Broker と通信を行うことで、各リソースの管理を行います。

ファームに追加された最初のサーバーは新しいサイトを作成し、そのサイトの Primary Connection Broker になります。またこの最初のサーバーは、デバイス接続ライセンスを処理する、ファームのライセンスサーバーにもなります。ファーム内のすべての Connection Broker(複数存在する場合)は、Parallels RAS 構成データベースの同期コピーを保持します。管理者が Parallels RAS コンソールで Parallels RAS 構成に変更を加えると、その変更は他のすべての Connection Broker に複製されます。

次の図は、2つのサイト(Site1 と Site2)を使用した Parallels RAS のインストールを示しています。 各サイトは、Primary Connection Broker(Primary CB)、Secure Gateway(SG)、RD Session Host(RDS host 1)、2 台目の RD Session Host(RDS host 2)、VDI(仮想デスクトップインフラストラクチャ)サーバー、および Windows PC で構成されています。

Parallels Client コネクションフロー

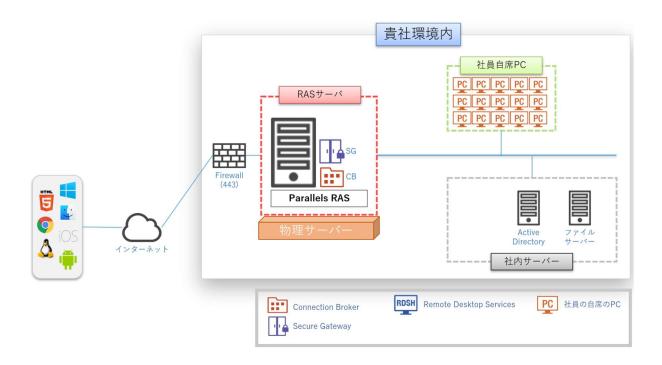
クライアント接続フローは、アプリケーションリストとアプリケーション起動の 2 つの段階で構成されます。以下では、各段階について詳しく説明します。以下で説明する手順は、リモートデスクトップ、ドキュメント、Web アプリケーション、ネットワークフォルダーなど、他のすべての種類の公開リソース(アプリケーションだけでなく)にも同様に適用されることに注意してください。

アプリケーションリスト

アプリケーションリストは、特定のユーザーが使用できる公開済みリソースのリストを取得する プロセスです。この段階では、次の手順が実行されます。

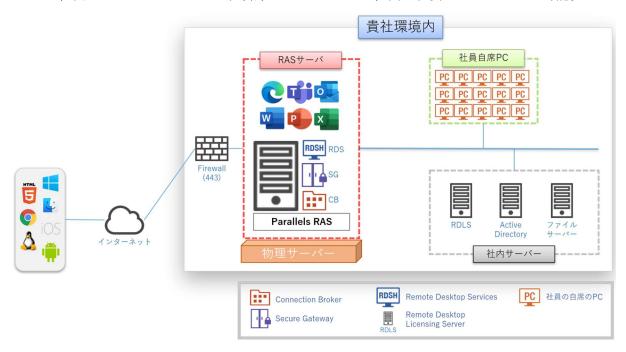
- 1. ユーザーがデバイスで Parallels Client を起動し、RAS 接続をダブルクリックします(構成されている場合)。
- 2. Parallels Client は、Secure Gateway または HALB アプライアンス(インストールされている場合)に接続します。
- 3. HALB がインストールされている場合、HALB アプライアンスは負荷分散ルールに従って Parallels クライアントを Secure Gateway に転送します。 HALB が SSL オフロードに関与していない場合(HALB がインストールされていないか、パススルーモードが設定されている場合)、クライアントと Secure Gateway 間の SSL セッションが確立されます。
- 4. Secure Gateway は、Connection Broker との接続トンネルを構築して、クライアント認証を開始します。
- 5. Parallels Client は、ユーザー資格情報を Connection Broker に送信します。
- 6. ユーザー認証が成功すると、Connection Broker は Secure Gateway SSL トンネルを介してアプリケーションリストを Parallels Client に返します。
- 7. アプリケーションリストがユーザーのデバイスの Parallels Client ウィンドウに表示されるため、ユーザーは起動するアプリケーションを選択できます。

アプリケーションの起動

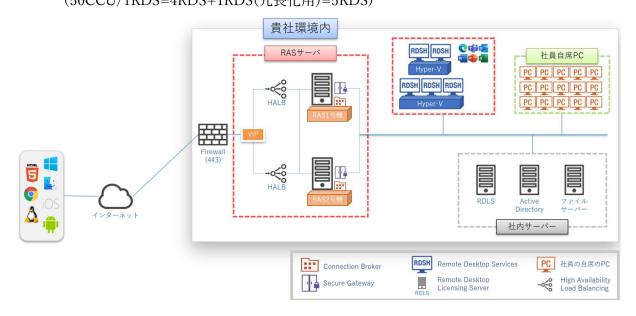

この段階は、次の手順が実行されます。

- 1. ユーザーがアプリケーションを起動します。
- 2. Parallels Client は、Secure Gateway トンネルを介して Connection Broker に要求を送信します。
- 3. Connection Broker は、最も負荷の少ない RD セッションホストを選択し、その IP アドレス を Secure Gateway 経由で Parallels クライアントに送り返します。
- 4. クライアント側で選択された接続モードに応じて、Parallels クライアントは直接または Secure Gateway を介して RD セッションホストに接続し、ユーザー資格情報を渡します。
- 5. RD セッションホストは、受信した資格情報を確認し、それらが有効な場合は、RDP セッションを開始します。

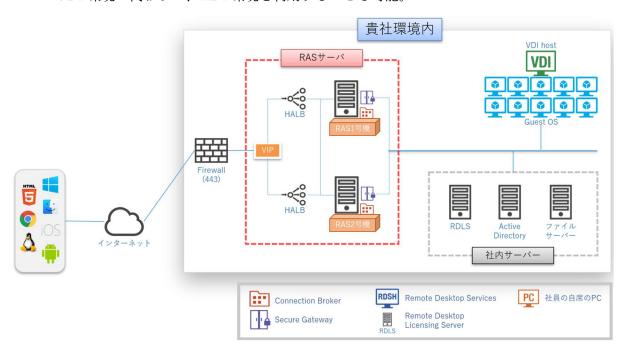
3. 構成案


1. シングルサーバーによる、最小構成での自席 PC の利用

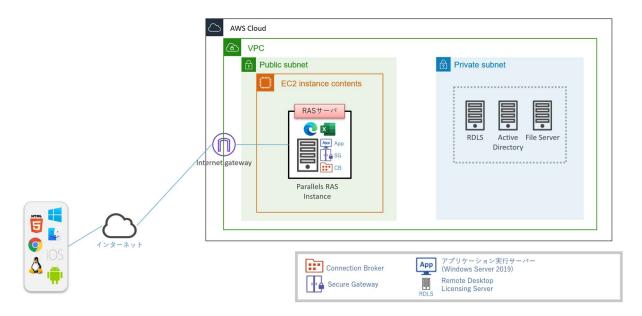
- RAS をシンプルな RD ゲートウェイとして利用。
- 15 ユーザーからの最小構成。
- RAS サーバーは、1 台構成。
- リモートからの自席 PC へのアクセスを許可。
- 社内ファイルサーバーへも、自席 PC 経由で安全にアクセスが可能。


2. 自席 PC と、バックオフィス向け RDS とのハイブリッド構成

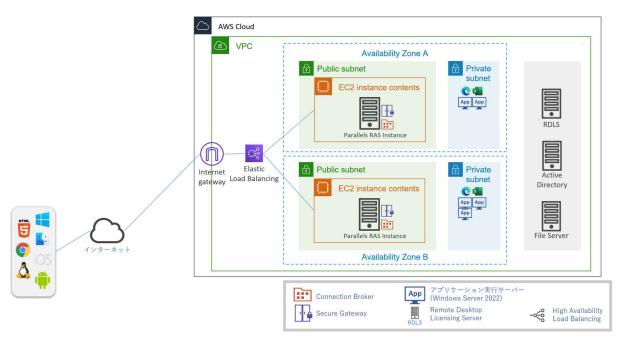
- RAS サーバーは、RDS 機能含め、1 台のオールインワン構成。
- リモートからの自席 PC へのアクセスも許可。
- RDS については、15 ユーザー同時接続とし、主にバックオフィス向けに、オフィスアプリの利用が可能。
- 社内ファイルサーバーへも、自席 PC または RDS 経由で、安全にアクセスが可能。


3. 「構成案 2」における、200 同時接続時の構成例

- 冗長化のため、RAS サーバーは 2 台構成。
- ロードバランスのため、HALB を導入。 (HALB は DMZ に設置することも可能)
- RDS は冗長化も考慮し、2 台以上の仮想化基盤上に構築し、1 台でおおよそ 50 ユーザー利用を想定。また冗長化のため、1 台多く導入とする。
 (50CCU/1RDS=4RDS+1RDS(冗長化用)=5RDS)

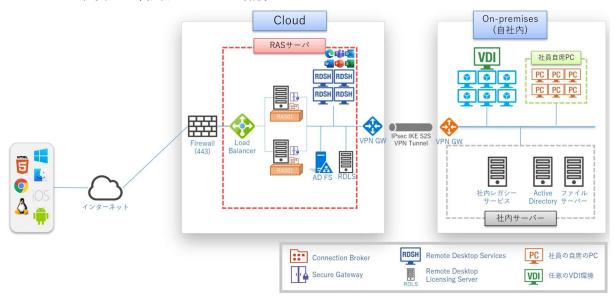

4. 物理 PC をなくし、VDI 環境へ完全移行

- 物理 PC をなくし、VDI 環境へ移行することで一元管理ができ、管理者の運用負担を減ら すことが可能。
- VDI ホストは、vSphere ESXi や Hyper-V など、一般的なハイパーバイザーを利用することが可能。
- 必要に応じて、RDSと組み合わせることで、ハイブリッド構成を容易に実現可能。
- VDI 環境の代わりに、HDI 環境を利用することも可能。


5. 検証環境の構成案(AWS Cloud を利用した場合)

- 本構成の趣旨は、あくまでも動作検証を目的としております。
- RAS サーバーは、RDS 機能含め、Windows Server 1 台のオールインワン構成となります。
- インターネットからのアクセスを想定しています。
- Parallels RAS インスタンスは、4core/8GB 以上を推奨します。
- 本構成は一例です。運用要件に合わせて、適宜ご変更ください。
- Private Subnet 内のインスタンスについては、必要に応じてお客様の運用ポリシー依存となります。

6. AWS Cloud を利用した構成案(200 同時接続を想定)


- 利用アプリは Excel や Edge 等を想定。
- RAS サーバーは、冗長化のため 2 台構成。
- APP サーバーは冗長化のため、1 台多く導入し、ELB にて負荷分散。 (4 台+1 台=5 台)
- 本構成のインスタンスの複数の Availability Zone への配置については一例となり、お客様の運用ポリシー依存になります。
- ELB は Network Load Balancer を利用します。

7. クラウドとのハイブリッド構成で、運用コストや事業継続性を向上

■ご提案趣旨

- クラウドを利用することで、運用コストや事業継続性を向上。 (本例は Azure をベースとしていますが、どのようなクラウドでも利用は可能です)
- AD FS を利用することで、社内 AD での認証連携が容易。
- Cloud 環境と自社内は VPN で接続し、社内リソースへは Cloud 上の RAS を経由することで、安全に利用することが可能。

